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Outline 
§  Acknowledgments 

§  Scope of the “ejecta source” package 

§  Shock detection and characterization 

§  Mass ejection rates inferred from (multiple) Richtmyer-Meshkov Instability (RMI) 
models 

§  Estimating ejecta particle initial sizes and velocities from the RMI model 

§  References 
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I acknowledge contributions with many colleagues 
(regarding ejecta source issues—with transport etc., the list would be longer)  

§  Implementation—FLAG 
•  Don Burton 
•  Nick Denissen 
•  Jimmy Fung 
•  Jim Hill 
•  other LAP code team 

§  Modeling—shock profiling 
•  Ben Magolan 
•  Eric Nelson 
•  Brian O’Neill 
•  Scott Runnels 

§  Modeling—RMI source 
•  Malcolm Andrews 
•  Billy Buttler 
•  Frank Cherne 
•  Guy Dimonte 
•  Jim Hammerberg 
•  other PEM M&B team 

§  Experimentalists 
•  Billy Buttler 
•  Russ Olson 

§  V&V, friendly users 
•  Amy Bauer 
•  Rendell Carver 
•  Brent Cline 
•  Shirish Chitanvis 
•  Carl Hagelberg 
•  Jeremy Margulies 
•  Garry Maskaly 
•  Leslie Sherrill 
•  Steve Sterbenz 
•  Guillermo Terrones 
•  Ian Tregillis 
•  Matt Williams 
•  Tony Zocher 
•  (did I miss anyone?) 

§  LLNL—peer review 
•  Grant Bazan 
•  Brandon Morgan 
•  other ARES team 

§  Institutional support 
•  ASC/IC/LAP 
•  XCP-1 
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My terminology—to foster giving credit where it is due 

§  Model = an approximate, quantitative description of some phenomenon. 
Often expressed as one or more equations. 

§  Package = a (more or less) self-contained part of a computer code, intended 
for a single purpose or to simulate a single class of phenomena. 

§  Thus a model may be implemented in a code package. 

§  Referring to a piece of code as a model may slight the contributions of the 
modelers (e.g., “Alan Harrison’s ejecta model in the code”). 

§  I’m talking today about FLAG’s ejecta package, and some of the models 
implemented therein. 
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The ejecta package in FLAG is modular, with pieces 
corresponding to different stages of ejecta development 
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§  The source package determines whether/when to produce ejecta, the production rate, 
and the initial conditions (size and velocity distributions) of the particles produced 
•  The production decision is based on shock detection and surface properties 
•  “Prescriptive” source packages allow the user to specify  

—  the production rate, and 
—  distributions from which particle initial sizes and velocities are sampled 

•  The Richtmyer-Meshkov Instability (RMI) package is “predictive,” using a model of 
RMI to predict 
—  the production rate, and 
—  initial particle sizes and velocities 

§  Other packages account for the transport phase (including drag, pressure forces, 
particle breakup, and collisions*) and later events (recollection, evaporation, and 
hydriding*) (* = future developments) 

This talk will focus on what we consider best practices for 
ejecta simulations with FLAG; there are other options 
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Shock detection and characterization is based on two 
acceleration thresholds 
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time 

acceleration 
of surface 

pathresh	

pathresh_low	

Acceleration must exceed 
this level to count as a shock 

When acceleration drops to 
this level, shock is over 
– ufs (needed by RMI model) 
determined at this time 
therefore equals shaded area 

To be accepted as a shock, acceleration must 
(1) start below lower threshold 
(2) exceed upper threshold 
(3) drop below lower threshold 
and surface* must be melted at time (3) 
*one zone below the surface, actually 
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We are exploring better methods of detecting and 
characterizing shocks 
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§  Scott Runnels 
and I researched 
this with grad 
students Ben 
Magolan, Brian 
O’Neill in 2014 

§  It is based on a 
1D method from 
Eric Nelson 

§  This needs further development 

§  It holds the promise of better estimates of ush, among other things. 
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The students implemented the 2D shock profiling 
method in FLAG 
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Sedov blast 
wave problem 
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Mass ejection rate computed from RMI model:  
Original form (isolution_method=0) 

Buttler et al. (2012) equations (2.4) [Mikaelian(1998) 
equation (17)] and (2.3): 

 

 

with initial rates 

 

where 
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}

Ejecta production rate (volume/area/time) is inferred 
from equality of spike and bubble volumes 

Spikes and bubbles must have equal growth 
rates: 

Eliminate        from equations: 
 
Integrate     over one cycle from tf to ti 
(measured from shock breakout time): 
 
 
 
which gives cumulative production equal to 
 
 
in the notation of Cherne, Hammerberg et al. 
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} 

λ

λ
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Compare to model from Cherne, Hammerberg, Andrews, 
Karkhanis and Ramaprabhu (LA-UR-15-24743) 

Define 

 

Then with unit shape function, 

 

 

and with (1) parabolic shape function and (2) spike/bubble volume 
conservation, 

 

 

and finally, accounting for time necessary for initial perturbation to invert, 
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Buttler et al. (2012) equation (2.1) 
[   =0 limit of Mikaelian (1998) equation (5a)]: 

 

where      and      are shock and free surface velocities 

 

 

 
and we use equality of spike and bubble volumes 
 
to find the production rate    . 

  

Ejecta particles are droplets pinched off from spike tips:  
“Improved” form (isolution_method=1) 
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Timeline and genealogy of mass ejection m(t) forms in 
FLAG RMI package 
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future work? future work? 
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The same RMI source coding is applied to second (and 
subsequent) shocks 

We assume that spikes 
resulting from first 

shock have pinched off 
to form ejecta 
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Then the bubbles 
provide the initial 

perturbation for the 
second shock 

The rest of the algorithm is unchanged 

Bubble height 
becomes new 
peak-to-peak 
perturbation 
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What about ejecta particle initial sizes and speeds? 

§  Having determined the mass ejection rate, we still need the sizes and 
velocities of the particles 

§  We use the width        of the spike (at its base) as the initial diameter of the 
ejecta. 

•  Can be quite large initially (namely,      ) 

•  Mean width of particle cloud may drop quickly as spike thins out 

•  Would a distribution of sizes be more believable? 

§  We use the growth rate     of the spike (at its tip) as the initial speed of the 
ejecta. 

§  Would a distribution of speeds be more believable? 
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What about ejecta particle initial directions? 

§  We suppose that the particles are launched in a direction normal to the 
surface. 

•  The shape and location of the resulting ejecta cloud can be very sensitive to the tilt 
of the mesh faces on the metal surface 

•  Cherne has done some MD calculations showing a more complex picture when the 
shock incidence is oblique 

•  Experiments…? 

§  All these approximations (this and the previous slide) are questionable; I 
would welcome some model development here. 

Slide 16 



Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA 

U N C L A S S I F I E D 

Selected references 
Buttler, W. T., D. M. Oró, D. L. Preston, K. O. Mikaelian, 
F. J. Cherne, R. S. Hixson, F. G. Mariam, C. Morris, J. 
B. Stone, G. Terrones, and D. Tupa, “Unstable 
Richtmyer-Meshkov Growth in Solid and Liquid Metals in 
Vacuum,” J. Fluid Mech. 703:60-84 (2012). 

Cherne, F. J., J. E. Hammerberg, M. J. Andrews, V. 
Karkhanis, and P. Ramaprabhu, “On Shock Driven 
Jetting of Liquid from Non-Sinusoidal Surfaces into a 
Vacuum,” LA-UR-15-24743 (2015). 

Fung, J., A. K. Harrison, S. Chitanvis, and J. Margulies, 
“Ejecta Source and Transport Modeling in the FLAG 
Hydrocode,” Computers & Fluids 83, 177-186 (2013). 

Harrison, A. K., “New capabilities for modeling creation 
and breakup of ejecta in the FLAG code,” LA-UR 
13-26819 (2013).  

Harrison, A. K. and R. L. Carver, "(U) Predictive source 
modeling in FLAG's ejecta package: What difference 
does it make?" LA-CP-14-01071 (2014).  

Mikaelian, K. O., “Analytic Approach to Nonlinear 
Rayleigh-Taylor and Richtmyer-Meshkov Instabilities,” 
Phys. Rev. Lett. 80, 508-511 (1998).  

Nelson, E. M., “Reliable estimation of shock position in 
shock-capturing compressible hydrodynamics codes,” in 
47th AIAA Aerospace Sciences Meeting, Orlando, FL 
(2009); also LA-UR-08-8056 (2008). 

O’Neill, B., B. Magolan, A. K. Harrison and S. R. 
Runnels, “New Methods for Profiling Shocks in 
Multidimensional Lagrange Calculations,” unpublished 
(2015). 

Runnels, S. R. and Margolin, L. G., “An integrated study 
of numerical shock shape, artificial viscosity, and 
plasticity,” LA-UR-13-24226 (2013). 

 

Slide 17 


